Brain-computer interface technology that you dare to admit, why do you not recognize the brain control what?
来自互联网
2. 本文研究的BCI系统是基于自发eeg的脑机接口系统。
In this paper, the BCI system we researched is based on the spontaneous EEG.
来自互联网
3. 目的:通过视觉诱发电位探索适合的脑机接口视觉刺激模式。
Objective: To explore the suitable visual stimulation patterns for brain-computer interface.
来自互联网
4. 前言:目的:研究基于视觉诱发电位的脑机接口视觉刺激器。
AIM: to design a visual stimulator used for brain-computer interface (BCI) based on visual evoked potential (VEP).
来自互联网
5. 脑机交互技术新进取得的进展表明,上述可能距离现实正越来越近。
New developments in brain-to-machine interfaces show that such possibilities are getting closer.
来自互联网
6. 该方法是一种新的脑机接口技术,是对现有技术的一个有益补充。
It is a supplement to the existing VEP based BCI technologies.
来自互联网
7. 实际的脑机接口中,正确率和信息传输速率是衡量系统性能的两个主要指标。
In practical BCI Systems, precision and information transfer rates (ITRs) are two important factors to measure their performances.
来自互联网
8. 脑机接口是指不依赖脑的正常输出通路,即外周神经和肌肉的信息传输通路。
A brain-computer interface (BCI) is a communication system that does not depend on the brain's normal output pathways of peripheral nerves and muscles.
来自互联网
9. 这个实验的初步探索将利于进一步研究植入式脑机接口中的电刺激反馈技术。
The exploration of this experiment will be beneficial to study electrical stimulation feedback technique in implantable brain-computer interface.
来自互联网
10. 设计一种仅使用进行简单思维任务时脑电信号(脑电图)的高准确率脑机接口。
A high accuracy BCI is designed using electroencephalogram EEG signals where the subjects have to think of only a single mental task.
来自互联网
11. 脑机接口对残疾人的实用性可以分为两大类:交流,控制物理设备或虚拟设备。
The practical possibilities that brain-machine interfaces offer to disabled people can be grouped in two categories: Communication, and controlling physical devices and virtual devices.
来自互联网
12. 脑机接口对残疾人的实用性可以分为两大类:交流,控制物理设备和虚拟设备。
JOSE MILLAN: "The practical possibilities that brain-machine interfaces offer to disabled people can be grouped in two categories: Communication, and controlling physical devices and virtual devices."
来自互联网
13. 在脑机接口研究中,针对脑电特征抽取,提出一种基于小波包最优基分解的方法。
In the study of brain-computer interfaces, a method based on best basis of wavelet packet decomposition was proposed. The method is used for the feature extraction of electroencephalogram.
来自互联网
14. 脑机接口是在人脑与计算机或其它电子设备之间建立的直接信息交流和控制通道。
Brain-computer interface is one passage established between human brain and computer or other electronic equipments for direct communication and control.
来自互联网
15. 设计有效的学习算法快速准确地对脑电信号进行连续预测是脑机接口研究的关键之一。
To develop effective learning algorithms for fast and accurate continuous prediction using Electroencephalogram (EEG) signal is a key issue in BrainComputer Interface (BCI).
来自互联网
16. 脑机交互技术(BCI),研究的是如何通过非自然的方法沟通脑内信息和外界环境。
Brain-Computer Interface (BCI), studies at how to enable the communication between brain and outside environment in unnatural way.
来自互联网
17. 为建立植入式脑机接口,本文主要研究大鼠运动皮层神经解码的相关实验和硬件系统。
The main purpose of this thesis is to study the hardware system for motor cortex neural decoding experiments in rats to build an implantable brain-computer interface.
来自互联网
18. 脑机接口正成为脑科学、康复工程、生物医学工程及人机自动控制研究领域的一个研究热点。
BCI research has drawn attention of scientists in the brain-science, calculator, engineering, biomedical engineering and human machine automatic control.
来自互联网
19. 植入式电极技术能提供高质量的神经信号,相对非植入式来说更能提高脑机接口系统的性能。
Implanted electrode technology can provide high-quality neural signals and thus the potential for increased performance relative to non-invasive approaches.
来自互联网
20. 研究已经显示我们的大脑有控制电视机的潜能,但是这不是唯一脑机接口的方法来“升级”人类。
Research already shows potential for our brains to control the television, but that's not the only way a brain-computer interface can "upgrade" humans.
来自互联网
21. “这意味着我们可以用一种无创的方式来开发下一代的脑机接口设备,”孔特雷·拉斯·维达尔说。
"This means we can use a noninvasive method to develop the next generation of brain-computer interface machines," Contreras-Vidal says.
来自互联网
22. 所采用的特征提取方法、特征频段能量确定方法及分类结果都被应用于在线脑机接口系统设计中。
The method to extract power character, the measure to find the peculiar frequency band and the results of classification will contribute to the design of an on-line BCI system.
In the research of the transient visual evoked potential (VEP) based brain-computer interface (BCI), VEP signal extraction and recognition are essential for obtaining BCI control signal.
BCI is not only an important way to understand and improve brain functions but also a novel communication and control mode. A BCI is expected to improve the human living level.
The main work and the research results of this thesis contain following the aspects: Firstly, Multiple visual stimulation patterns were produced on the computer screen through programming.
With a series of experiments, it is proved that using the system can realize an off-line BCI based on visual stimulus easily, and on-line BCIs with other apparatuses' help are possible.